Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tony D. Keene, Michael B. Hursthouse and Daniel J. Price*

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England

Correspondence e-mail:

daniel.price@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.108$
Data-to-parameter ratio $=21.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetra-n-butylamine(carbonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(III) n-butylcarbamate dihydrate

The title compound, $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\right)_{4}\right]\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is a coordination complex with an $\mathrm{N}_{4} \mathrm{O}_{2}$ coordination sphere around the central $\mathrm{Co}^{\mathrm{III}}$ ion. The small bite angle of the chelating carbonate causes a distortion of the octahedral geometry to an approximately $C_{2 v}$ local symmetry. Hydrogenbonding between the carbonate, carbamate and amine groups, and the water of crystallization, results in a complex twodimensional network.

Comment

The title complex, (I) (Fig. 1), crystallized very slowly from a mixture of cobalt(II) oxalate dihydrate, n-butylamine and water. This synthesis involves the aerobic oxidation of $\mathrm{Co}^{\mathrm{II}}$ to $\mathrm{Co}^{\mathrm{III}}$, which is facilitated by the strong-field amine ligands. In addition, the oxalate is oxidized to CO_{2}, which is sequestered in this basic reaction mixture and converted into carbonate and n-butylcarbamate.

Compound (I) contains monocationic $\left[\mathrm{Co}\left(\mathrm{BuNH}_{2}\right)_{4}\left(\mathrm{CO}_{3}\right)\right]$ units and non-coordinating n-butylcarbamate anions. The $\mathrm{Co}^{\mathrm{III}}$ ion has a distorted octahedral coordination environment

Figure 1
A view of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Alkyl H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Figure 2
A view of the amine-carbonate hydrogen-bonded ribbon, looking down the c axis, showing an alternation of the two distinct types of cyclic hydrogen-bonded motif making up the ribbon structure.
(Table 1), due to the constraints imposed by the chelating carbonate group. While the $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$ angle is very acute, at $68.86(5)^{\circ}$, all other angles not involving the carbonate group are close to the ideal octahedral values. The $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Co}-\mathrm{O}$ bond lengths are typical for a low-spin $\mathrm{Co}^{\mathrm{III}}$ ion and this assignment is supported by electronic spectroscopy, from which we calculate $\Delta_{\text {oct }}=19600 \mathrm{~cm}^{-1}$. We note that three of the four coordinated butylamine ligands adopt a fully extended all-anti conformation, while one of these and the butyl chain on the carbamate show a gauche conformational geometry.

The structure of (I) shows a very distinct two-dimensional character, with layers of the non-polar alkyl chains alternating with layers that contain more polar functionalities, in particular the complex cation core, the carbamate anion and the water of crystallization. The complex cations are hydrogenbonded through the amine H atoms and the carbonate groups to form ribbons running parallel to the a axis (Fig. 2). These ribbons are further hydrogen-bonded through the water of crystallization and the carbamate units into a two-dimensional structure in the $a b$ plane. In total, 11 distinct linear hydrogen bonds are involved in this very complex network (Table 2).

Metal carbonate-containing compounds are of interest as possible fixatives of atmospheric CO_{2} (Zhu \& Chen, 1999), and biologically in relation to carbonic anhydrases (Dussart et al., 2002). A search of the Cambridge Structural Database (CSD, Version 5.42 of November 2002; Allen, 2002) for discrete metal carbonate-containing structures reveals that octahedral $\mathrm{Co}^{\text {III }}$ complexes outnumber all other types (see, for example, Bernal et al., 1994; Kaas \& Sorensen, 1973; GarcíaGranda et al., 1993). It is particularly interesting that, in most cases, while the carbonate occupies two coordination sites, the other four sites are occupied by N -donor ligands.

Due to their tendency for thermal decarboxylation, carbamic acids and free carbamate are not common in crystal structures. There are a number of reports where carbamate is found to be coordinated to a metal centre (Blacque et al., 2001; Duatti et al., 1991; Schmid \& Strähle, 1991). Compound (I) represents a rare example where a carbamate group simply acts as a non-coordinating counterion (Kovbasyuk et al., 1997).

Experimental

$\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}(183 \mathrm{mg}, 1.00 \mathrm{mmol})$, n-butylamine $(1.0 \mathrm{ml})$ and distilled water $(10 \mathrm{ml})$ were stirred in a test tube and left to react for six months. Although initially a green precipitate was formed, eventually small red crystals of (I) appeared. These were separated manually. IR (diffuse reflectance, cm^{-1}): 3378-3233 br m (NH and OH stretch), $2958 m(\mathrm{CH}), 2924 m(\mathrm{CH}), 2868 m(\mathrm{CH}), 2409 w, 2319$ $w, 2213 w, 1790 w, 1614$ brs $\left(\mathrm{CO}_{3} v_{3}\right.$; carbamate and NH bend $), 1465 s$ (CH_{2} def.), $1373 s\left(\mathrm{CH}_{3}\right.$ sym. def.), $1306 s$ (carbamate), $1275 s\left(\mathrm{CO}_{3}\right.$ $v_{3^{\prime}}$; OH bend $), 1217 s, 1105 s, 1038\left(\mathrm{CO}_{3} v_{1}\right) 990 s, 817 s\left(\mathrm{CO}_{3} v_{2}\right), 755 s$ $\left(\mathrm{CO}_{3} v_{4}\right), 674 s\left(\mathrm{CO}_{3} v_{4^{\prime}}\right), 582 s, 492 m, 473 m, 458 m, 422 m(M O)$; UV/VIS/NIR (diffuse reflectance, cm^{-1}): 19000 and $20100\left({ }^{1} A_{1 g} \rightarrow\right.$ ${ }^{1} T_{1 g}$ split by reduced symmetry), $27000\left(\rightarrow{ }^{1} T_{2 g}\right)$. IR assignments were based on the literature values of comparable compounds (Nakamoto, 1968; Williams \& Fleming, 1987)

Crystal data

$\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\right)_{4}\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.22 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=563.66$
Triclinic, $P \overline{1}$
$a=8.7948$ (2) A
$b=12.9638(4) \AA$
$c=13.9288$ (4) \AA
$\alpha=88.187$ (2) ${ }^{\circ}$
$\beta=89.525$ (2) ${ }^{\circ}$
$\gamma=75.210(2)^{\circ}$
$V=1534.69$ (7) \AA^{3}
Cell parameters from 33407
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, red
$0.16 \times 0.14 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\text {min }}=0.634, T_{\text {max }}=0.953$
30921 measured reflections
7050 independent reflections
6003 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-17 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0478 P)^{2}\right. \\
& +0.8409 P]
\end{aligned}
$$

$$
w R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.108
$$

$$
S=1.03
$$

7050 reflections
332 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{Co} 1$	$1.9113(12)$	$\mathrm{N} 2-\mathrm{Co} 1$	$1.9687(14)$
$\mathrm{O} 2-\mathrm{Co} 1$	$1.9214(12)$	$\mathrm{N} 3-\mathrm{Co} 1$	$1.9563(14)$
$\mathrm{N} 1-\mathrm{Co} 1$	$1.9838(15)$	$\mathrm{N} 4-\mathrm{Co} 1$	$1.9849(15)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$68.86(5)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 1$	$90.86(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	$99.99(6)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$90.57(6)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 3$	$168.74(6)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 4$	$91.70(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$87.94(6)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 4$	$87.97(6)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 2$	$92.50(6)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$	$90.86(6)$
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2$	$88.56(6)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$179.26(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$169.00(6)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$89.90(6)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$100.34(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 5^{\text {i }}$	0.90	2.07	2.956 (3)	167
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.90	2.11	2.996 (3)	168
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {i }}$	0.90	2.03	2.898 (4)	160
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2 W^{\text {ii }}$	0.90	2.14	3.026 (3)	166
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 5^{\mathrm{i}}$	0.90	2.09	2.967 (4)	166
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2 W^{\text {ii }}$	0.90	2.15	2.974 (2)	152
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.90	2.18	3.024 (2)	157
$\mathrm{O} 2 W-\mathrm{H} 21 W \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.851 (16)	1.854 (19)	2.695 (4)	169.7 (18)
$\mathrm{O} 2 W-\mathrm{H} 22 W \cdots \mathrm{O} 1 W$	0.853 (17)	1.96 (2)	2.754 (4)	154 (2)
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O}$	0.851 (17)	1.907 (17)	2.751 (3)	171 (2)
$\mathrm{O} 1 W-\mathrm{H} 12 W \cdots \mathrm{O} 4$	0.845 (17)	1.94 (3)	2.780 (3)	170 (3)

H atoms bound to C or N atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.96-0.97$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). H atoms bound to O atoms were located in difference maps, but their distances and angles were restrained to literature values.

Data collection: DENZO (Otwinowski \& Minor, 1997); cell refinement: $D E N Z O$ and COLLECT (Nonius, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999).

The authors are grateful to the EPSRC for the provision of X-ray crystallographic facilities and for the award of an Advanced Research Fellowship to DJP.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernal, I., Cai, J., Cetrullo, J. \& Massoud, S. S. (1994). Struct. Chem. 5, 265-275, and references therein.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Blacque, O., Brunner, H., Kubicki, M. M., Leblanc, J.-C., Meier, W., Moize, C., Mugnier, Y., Sadorge, A., Wachter, J. \& Zabel, M. (2001). J. Organomet. Chem. 634, 47-54.
Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Duatti, A., Marchi, A., Bertalasi, V. \& Ferretti, V. (1991). J. Am. Chem. Soc. 113, 9680-9682.
Dussart, Y., Harding, C., Dalgaard, P., McKenzie, C., Kadirvelraj, R., McKee, V. \& Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713, and references therein.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
García-Granda, S., Calvo-Pérez, V. \& Gómez-Beltrán, F. (1993). Acta Cryst. C49, 322-324.
Kaas, K. \& Sorensen, A. M. (1973). Acta Cryst. B29, 113-120.
Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. \& Iskenderov, T. S. (1997). Polyhedron, 16, 1723-1729.
Nakamoto, K. (1968). Spectroscopy and Structure of Metal Chelate Compounds, edited by K. Nakamoto \& P. J. McCarthy, ch. 4, p.26-285. New York: John Wiley \& Sons, Inc.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schmid, S. \& Strähle, J. (1991). Z. Naturforsch. Teil B, 46, 235-244.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Williams, D. H. \& Fleming, I. (1987). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw-Hill Book Company.
Zhu, H.-L. \& Chen, X.-M. (1999). Acta Cryst. C55, 2010-2012.

