Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Tetra-n-butylamine(carbonato- κ^2O ,O')cobalt(III) n-butylcarbamate dihydrate

Tony D. Keene, Michael B. Hursthouse and Daniel J. Price*

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England

Correspondence e-mail: daniel.price@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.041 wR factor = 0.108Data-to-parameter ratio = 21.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $[Co(CO_3)(C_4H_{11}N)_4](C_5H_{10}NO_2)\cdot 2H_2O$, is a coordination complex with an N_4O_2 coordination sphere around the central Co^{III} ion. The small bite angle of the chelating carbonate causes a distortion of the octahedral geometry to an approximately $C_{2\nu}$ local symmetry. Hydrogenbonding between the carbonate, carbamate and amine groups, and the water of crystallization, results in a complex two-dimensional network.

Received 2 March 2004 Accepted 4 March 2004 Online 20 March 2004

Comment

The title complex, (I) (Fig. 1), crystallized very slowly from a mixture of cobalt(II) oxalate dihydrate, n-butylamine and water. This synthesis involves the aerobic oxidation of $\mathrm{Co^{II}}$ to $\mathrm{Co^{III}}$, which is facilitated by the strong-field amine ligands. In addition, the oxalate is oxidized to $\mathrm{CO_2}$, which is sequestered in this basic reaction mixture and converted into carbonate and n-butylcarbamate.

Compound (I) contains monocationic $[Co(BuNH_2)_4(CO_3)]$ units and non-coordinating *n*-butylcarbamate anions. The Co^{III} ion has a distorted octahedral coordination environment

A view of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Alkyl H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 A view of the amine–carbonate hydrogen-bonded ribbon, looking down the c axis, showing an alternation of the two distinct types of cyclic hydrogen-bonded motif making up the ribbon structure.

(Table 1), due to the constraints imposed by the chelating carbonate group. While the O1–Co1–O2 angle is very acute, at $68.86~(5)^{\circ}$, all other angles not involving the carbonate group are close to the ideal octahedral values. The Co–N and Co–O bond lengths are typical for a low-spin Co^{III} ion and this assignment is supported by electronic spectroscopy, from which we calculate $\Delta_{\rm oct}=19~600~{\rm cm}^{-1}$. We note that three of the four coordinated butylamine ligands adopt a fully extended all-*anti* conformation, while one of these and the butyl chain on the carbamate show a *gauche* conformational geometry.

The structure of (I) shows a very distinct two-dimensional character, with layers of the non-polar alkyl chains alternating with layers that contain more polar functionalities, in particular the complex cation core, the carbamate anion and the water of crystallization. The complex cations are hydrogen-bonded through the amine H atoms and the carbonate groups to form ribbons running parallel to the a axis (Fig. 2). These ribbons are further hydrogen-bonded through the water of crystallization and the carbamate units into a two-dimensional structure in the ab plane. In total, 11 distinct linear hydrogen bonds are involved in this very complex network (Table 2).

Metal carbonate-containing compounds are of interest as possible fixatives of atmospheric CO₂ (Zhu & Chen, 1999), and biologically in relation to carbonic anhydrases (Dussart *et al.*, 2002). A search of the Cambridge Structural Database (CSD, Version 5.42 of November 2002; Allen, 2002) for discrete metal carbonate-containing structures reveals that octahedral Co^{III} complexes outnumber all other types (see, for example, Bernal *et al.*, 1994; Kaas & Sorensen, 1973; García-Granda *et al.*, 1993). It is particularly interesting that, in most cases, while the carbonate occupies two coordination sites, the other four sites are occupied by *N*-donor ligands.

Due to their tendency for thermal decarboxylation, carbamic acids and free carbamate are not common in crystal structures. There are a number of reports where carbamate is found to be coordinated to a metal centre (Blacque *et al.*, 2001; Duatti *et al.*, 1991; Schmid & Strähle, 1991). Compound (I) represents a rare example where a carbamate group simply acts as a non-coordinating counterion (Kovbasyuk *et al.*, 1997).

Experimental

Co(C₂O₄)·2H₂O (183 mg, 1.00 mmol), *n*-butylamine (1.0 ml) and distilled water (10 ml) were stirred in a test tube and left to react for six months. Although initially a green precipitate was formed, eventually small red crystals of (I) appeared. These were separated manually. IR (diffuse reflectance, cm⁻¹): 3378–3233 *br m* (NH and OH stretch), 2958 *m* (CH), 2924 *m* (CH), 2868 *m* (CH), 2409 *w*, 2319 *w*, 2213 *w*, 1790 *w*, 1614 *br s* (CO₃ ν_3 ; carbamate and NH bend), 1465 *s* (CH₂ def.), 1373 *s* (CH₃ sym. def.), 1306 *s* (carbamate), 1275 *s* (CO₃ ν_3 ; OH bend), 1217 *s*, 1105 *s*, 1038 (CO₃ ν_1) 990 *s*, 817 *s* (CO₃ ν_2), 755 *s* (CO₃ ν_4), 674 *s* (CO₃ ν_4), 582 *s*, 492 *m*, 473 *m*, 458 *m*, 422 *m* (MO); UV/VIS/NIR (diffuse reflectance, cm⁻¹): 19 000 and 20 100 ($^1A_{1g} \rightarrow ^1T_{1g}$ split by reduced symmetry), 27 000 ($\rightarrow ^1T_{2g}$). IR assignments were based on the literature values of comparable compounds (Nakamoto, 1968; Williams & Fleming, 1987)

Crystal data

$[Co(CO_3)(C_4H_{11}N)_4]$ -	Z = 2
$(C_5H_{10}NO_2)\cdot 2H_2O$	$D_x = 1.22 \text{ Mg m}^{-3}$
$M_r = 563.66$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 33 407
$a = 8.7948 (2) \text{ Å}_{2}$	reflections
b = 12.9638 (4) Å	$\theta = 2.9 - 27.5^{\circ}$
c = 13.9288 (4) Å	$\mu = 0.60 \text{ mm}^{-1}$
$\alpha = 88.187 (2)^{\circ}$	T = 120 (2) K
$\beta = 89.525 (2)^{\circ}$	Block, red
$\gamma = 75.210 \ (2)^{\circ}$	$0.16 \times 0.14 \times 0.08 \text{ mm}$
$V = 1534.69 (7) \text{ Å}^3$	

Data collection

Nonius KappaCCD area-detector	7050 independent reflections
diffractometer	6003 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.092$
Absorption correction: multi-scan	$\theta_{ m max} = 27.6^{\circ}$
(SORTAV; Blessing, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.634, \ T_{\max} = 0.953$	$k = -16 \rightarrow 16$
30 921 measured reflections	$l = -17 \rightarrow 18$

Refinement

refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$
R(F) = 0.041	+ 0.8409P]
$wR[F^2 > 2\sigma(F^2)] = 0.108$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
7050 reflections	$\Delta \rho_{\text{max}} = 0.31 \text{ e Å}^{-3}$
332 parameters	$\Delta \rho_{\min} = -0.73 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

O1-Co1	1.9113 (12)	N2-Co1	1.9687 (14)
O2-Co1	1.9214 (12)	N3-Co1	1.9563 (14)
N1-Co1	1.9838 (15)	N4-Co1	1.9849 (15)
O1-Co1-O2	68.86 (5)	N3-Co1-N1	90.86 (6)
O1-Co1-N3	99.99 (6)	N2-Co1-N1	90.57 (6)
O2-Co1-N3	168.74 (6)	O1-Co1-N4	91.70 (6)
O1-Co1-N2	87.94 (6)	O2-Co1-N4	87.97 (6)
O2-Co1-N2	92.50 (6)	N3-Co1-N4	90.86 (6)
N3-Co1-N2	88.56 (6)	N2-Co1-N4	179.26 (6)
O1-Co1-N1	169.00 (6)	N1-Co1-N4	89.90 (6)
O2-Co1-N1	100.34 (6)		, ,

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N2-H2A\cdots O5^{i}$	0.90	2.07	2.956 (3)	167
$N2-H2B\cdots O3^{i}$	0.90	2.11	2.996 (3)	168
$N3-H3A\cdots O4^{i}$	0.90	2.03	2.898 (4)	160
$N3-H3B\cdots O2W^{ii}$	0.90	2.14	3.026 (3)	166
$N1-H1B\cdots O5^{i}$	0.90	2.09	2.967 (4)	166
$N4-H4A\cdots O2W^{ii}$	0.90	2.15	2.974(2)	152
$N4-H4B\cdots O2^{ii}$	0.90	2.18	3.024(2)	157
$O2W-H21W\cdots O4^{iii}$	0.851 (16)	1.854 (19)	2.695 (4)	169.7 (18)
$O2W-H22W\cdots O1W$	0.853 (17)	1.96(2)	2.754 (4)	154 (2)
O1W-H11W···O3	0.851 (17)	1.907 (17)	2.751 (3)	171 (2)
O1 <i>W</i> −H12 <i>W</i> ···O4	0.845 (17)	1.94 (3)	2.780 (3)	170 (3)

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 2 - y, 1 - z.

H atoms bound to C or N atoms were positioned geometrically and refined as riding, with C—H = 0.96–0.97 and N—H = 0.90 Å, and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm parent\ atom})$. H atoms bound to O atoms were located in difference maps, but their distances and angles were restrained to literature values.

Data collection: *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO* and *COLLECT* (Nonius, 1998); data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997) in *WinGX* (Farrugia, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997) in *WinGX*; molecular graphics: *DIAMOND* (Brandenburg, 1999).

The authors are grateful to the EPSRC for the provision of X-ray crystallographic facilities and for the award of an Advanced Research Fellowship to DJP.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bernal, I., Cai, J., Cetrullo, J. & Massoud, S. S. (1994). Struct. Chem. 5, 265–275, and references therein.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

Blacque, O., Brunner, H., Kubicki, M. M., Leblanc, J.-C., Meier, W., Moize, C., Mugnier, Y., Sadorge, A., Wachter, J. & Zabel, M. (2001). J. Organomet. Chem. 634, 47–54.

Brandenburg, K. (1999). *DIAMOND*. Release 2.1c. Crystal Impact GbR, Bonn, Germany.

Duatti, A., Marchi, A., Bertalasi, V. & Ferretti, V. (1991). J. Am. Chem. Soc. 113, 9680–9682.

Dussart, Y., Harding, C., Dalgaard, P., McKenzie, C., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704–1713, and references therein.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

García-Granda, S., Calvo-Pérez, V. & Gómez-Beltrán, F. (1993). *Acta Cryst.* C49, 322–324.

Kaas, K. & Sorensen, A. M. (1973). Acta Cryst. B29, 113-120.

Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–1729.

Nakamoto, K. (1968). Spectroscopy and Structure of Metal Chelate Compounds, edited by K. Nakamoto & P. J. McCarthy, ch. 4, p.26–285. New York: John Wiley & Sons, Inc.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Schmid, S. & Strähle, J. (1991). Z. Naturforsch. Teil B, 46, 235-244.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Williams, D. H. & Fleming, I. (1987). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw-Hill Book Company.

Zhu, H.-L. & Chen, X.-M. (1999). Acta Cryst. C55, 2010-2012.